A Conservative, Optimization-based Semi-lagrangian Spectral Element Method for Passive Tracer Transport

نویسندگان

  • Pavel B. Bochev
  • Scott A. Moe
  • Kara J. Peterson
  • Denis Ridzal
چکیده

Abstract. We present a new optimization-based, conservative, and quasi-monotone method for passive tracer transport. The scheme combines high-order spectral element discretization in space with semi-Lagrangian time stepping. Solution of a singly linearly constrained quadratic program with simple bounds enforces conservation and physically motivated solution bounds. The scheme can handle efficiently a large number of passive tracers because the semi-Lagrangian time stepping only needs to evolve the grid points where the primitive variables are stored and allows for larger time steps than a conventional explicit spectral element method. Numerical examples show that the use of optimization to enforce physical properties does not affect significantly the spectral accuracy for smooth solutions. Performance studies reveal the benefits of high-order approximations, including for discontinuous solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core

In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the...

متن کامل

A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere

The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a wide range of applications are known to enjoy many computational advantages. DG methods coupled with strong-stabilitypreserving explicitRunge–Kutta discontinuousGalerkin (RKDG) timediscretizations provide a robust numerical approach suitable for geoscience applications including atmosphericmodeling.However, ...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere

The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a wide range of applications are known to enjoy many computational advantages. DG methods coupled with strong-stability preserving explicit Runge-Kutta time discretizations (RKDG) provide a robust numerical approach suitable for geoscience applications including atmospheric modeling. However, a major drawback ...

متن کامل

A Conservative Semi - Lagrangian Discontinuous Galerkin Scheme 1 on the Cubed - Sphere

6 The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a 7 wide range of applications are known to enjoy many computational advantages. DG methods 8 coupled with strong-stability preserving explicit Runge-Kutta time discretizations (RKDG) 9 provide a robust numerical approach suitable for geoscience applications including atmo10 spheric modeling. However, a majo...

متن کامل

A fully conservative Eulerian-Lagrangian method for a convection-diffusion problem in a solenoidal field

Tracer transport is governed by a convection-diffusion problem modeling mass conservation of both tracer and ambient fluids. Numerical methods should be fully conservative, enforcing both conservation principles on the discrete level. Locally conservative characteristics methods conserve the mass of tracer, but may not conserve the mass of the ambient fluid. In a recent paper by the authors [A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015